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Abstract: Microscopic examination is one of the most common methods for acute 
lymphoblastic leukemia (ALL) diagnosis. Most traditional methods of automized blood cell 
identification are based on RGB color or gray images captured by light microscopes. This 
paper presents an identification method combining both spectral and spatial features to 
identify lymphoblasts from lymphocytes in hyperspectral images. Normalization and 
encoding method is applied for spectral feature extraction and the support vector machine-
recursive feature elimination (SVM-RFE) algorithm is presented for spatial feature 
determination. A marker-based learning vector quantization (MLVQ) neural network is 
proposed to perform identification with the integrated features. Experimental results show 
that this algorithm yields identification accuracy, sensitivity, and specificity of 92.9%, 93.3%, 
and 92.5%, respectively. Hyperspectral microscopic blood imaging combined with neural 
network identification technique has the potential to provide a feasible tool for ALL pre-
diagnosis. 
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1. Introduction 

According to the report from American Cancer Society, more than 54,000 individuals are 
diagnosed with and nearly 24,000 are killed by leukemia per year in the US [1]. Leukemia is 
one of the five leading types of cancer in children, young adults, and people over the age of 
80. Generally speaking, leukemia is a type of blood cancer that begins in the bone marrow 
and lymphoma, usually due to uncontrolled growth of hematopoietic cells with genetic 
mutations [2, 3]; a large number of immature leucocytes produced by neoplastic proliferations 
are then spread into the bloodstream. Leukemia is either “acute” or “chronic” based on the 
pathogeny and disease progression. Acute leukemia, which is more serious, presents with 
over 20% of blasts in the peripheral blood or bone marrow [3, 4]. The French-American-
British (FAB) classification of acute leukemia contains two subtypes: Acute lymphoblastic 
leukemia (ALL) and acute myeloid leukemia (AML) [5, 6]. ALL is characterized by the 
overproduction and continuous multiplication of malignant lymphoblast or blasts and its 
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incidence peaks between 2 and 5 years of age [7]. Survival in pediatric acute lymphoblastic 
leukemia has improved to nearly 90% in trials derived from lymphocyte biological feature 
detection and pharmacodynamics treatment, as well as improved supportive care [8]. Survival 
could be further improved, however, and prognoses still remain generally poor in infants and 
adults. Early diagnosis of ALL is of vital importance for timely treatment and recovery. 

Microscopy examination of peripheral blood smear is a common initial diagnostic 
procedure which involves discriminating mature lymphocytes from immature lymphocytes 
(lymphoblasts) [9]. Innovative approaches such as flow cytometry, immunophenotyping, and 
molecular probing can yield precise results with the diagnostic accuracy of above 90% on a 
per-patient [10], but in regards to cost and capacity, the morphological identification of 
lymphoblasts in blood smears is still the optimal choice for initial ALL detection [11]. 
Traditionally, this method is operated manually by a skilled hematologist, which is lengthy, 
time-consuming, and costly because it requires considerable training and experience. It is also 
susceptible to non-standard precision due to unavoidable intra-observer variations and sample 
imperfections [12, 13]. 

Researchers are currently working towards stable substitutes to reduce the heavy 
workload and costly labor of this diagnosis process. Advancements in hardware and software 
technology have brought about a number of automated leukocyte identification methods that 
are indeed low in cost and with reliable accuracy. Current analyzers show high classification 
accuracy for normal leukocytes and differential blood count, but said accuracy declines 
sharply when the system detects abnormalities or malignant leukocytes [14, 15]. Automatic 
abnormal leukocyte (e.g., lymphoblast, promyelocyte, and promonocyte) detection has been 
proposed to acquire morphological information and to assist hematologists in pre-diagnosis of 
leukemia. These methods may be threshold-based [16] or involve statistical texture analysis 
[17], support vector machines [18], mean shift algorithms [19], or neural networks [12]. 
Recently, Mohapatra, D. Patra, and S. Satpathy investigated the use of an ensemble classifier 
system for the early diagnosis of ALL in blood microscopic images [20]. L. Putzu et al. 
attempted to isolate the whole leukocyte and then separate the nucleus and cytoplasm to 
obtain feature sets for various classification models [21]. Neoh et al. reported a novel 
clustering algorithm with stimulating discriminant measures (SDM) of both within- and 
between-cluster scatter variances to produce robust segmentation for the nucleus and 
cytoplasm of lymphocytes and lymphoblasts [22]. These researchers have demonstrated the 
feasibility and objectivity of lymphoblast detection by microscopic images using 
morphology-based methods, but these studies were not without limitations. The 2D images 
captured by traditional light microscopes only contain spatial information, making the feature 
extraction of leukocytes complicated and potentially inaccurate. Further, uneven staining and 
smear thickness induce luminance variances which may lead to changes in the smear images’ 
color or texture, making leukocytes even more difficult to discriminate. There is still demand 
for new technologies and methods of lymphoblast identification by microscopic images. 

As an emerging imaging modality, microscopic hyperspectral imaging technology may 
provide a new solution to automatic lymphoblast identification. Hyperspectral imaging (HSI) 
originates from remote sensing and provides an advantageous combination of spectroscopy 
and 2D imaging which yields images across a wide range of the electromagnetic spectrum 
[23]. When light is delivered into biological tissue, the scattered, reflected, and transmitted 
light captured by HSI can be ascribed to inhomogeneity in biological structures of tissues 
[24]. To this effect, hyperspectral images containing both spectral and spatial information can 
be applied for blood cell identification and hematology disease diagnosis. For example, G. 
Sacco Verebes et al. analyzed the spectral signatures of blood cell components with enhanced 
darkfield microscopy and aimed at building up spectral libraries to distinguish active from 
inactive cells [25]. Q. Li et al. proposed an algorithm to identify red blood cells by integrating 
active contour models and automated two-dimensional k-means with a spectral angle mapper 
algorithm [26]. These studies demonstrated the potential effectiveness of combining spectral 
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and spatial information provided by hyperspectral imaging systems for blood cell analysis. 
However, there have been few studies on the automatic identification of lymphoblasts from 
hyperspectral images for ALL pre-diagnosis. 

The purpose of this study was to establish a new method of confirming the presence or 
absence of lymphoblasts in blood samples to assist early ALL diagnosis. First, hyperspectral 
lymphocyte images of peripheral blood smear (PBS) samples were captured by a homemade 
acousto-optic tunable filter (AOTF) based molecular hyperspectral imaging (MHSI) system. 
These hyperspectral images, containing both spectral and spatial information, can provide 
significant features for the discrimination of lymphoblasts and lymphocytes. Normalization 
and binary coded decimal (BCD) coding were then applied for spectral analysis. The SVM-
RFE algorithm was established to determine the most significant spatial features. Finally, a 
marker-based LVQ (MLVQ) neural network was designed as the classifier to integrate the 
spectral and spatial information efficiently and complete the identification procedure. 

2. Methods 

2.1 Hyperspectral blood image data 

Hyperspectral imaging was originally defined in the remote sensing field as a combination of 
conventional imaging and spectroscopy methods to obtain both the spatial and spectral 
information of targets. To adapt the microscopic HSI system to blood smear detection, 
previous researchers have built homemade staring imaging mode molecular hyperspectral 
imaging (MHSI) systems [26]. Our MHSI system operates in the spectral range of 550-1000 
nm with 2-5 nm spectral resolution. When a blood smear is prepared on the stage, the 
software embedded in the matched computer monitors and captures the hyperspectral blood 
images. Each band of the hyperspectral blood image consists of 1280 × 1024 pixels × 12 
bits/pixel, which is stored in the band sequential (BSQ) file format. 

As shown in Fig. 1, the hyperspectral image cube contains three dimensions: the line 
dimension, sample dimension, and wavelength dimension. As opposed to pixels in 2D images 
with single gray values, each pixel in the hyperspectral cube is presented as an N-dimensional 
spectrum vector reflected in the wavelength dimension. This spectrum vector contains rich 
pixel information that can be viewed as the spectrum feature of the specific material in the 
pixel. The vector shows increased homogeneity within the same material and increased 
heterogeneity among different materials, making various materials highly distinguishable. 
Hyperspectral blood images containing both the spatial and spectral features of blood cells 
represent a promising technique for specific blood cell analysis. 

 

Fig. 1. Microscopy hyperspectral image cube 
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2.2 Image preprocessing 

A hyperspectral image directly obtained from an MHSI system is generally referred to as a 
“raw image”. These images are captured under the influence of the emission spectra of the 
illumination sources, the transmission of the optics in the microscope and the detection 
sensitivity of the charge coupled device (CCD) camera. To eliminate these effects and ensure 
that the real characteristic spectra of blood cells is acquired, a calibration process is needed 
prior to spectral analysis. 

In the proposed setup, a white reference image is first captured by the MHSI system, 
which records the reflectance of a blank thin glass slide dyed by Giemsa-stain as the control 
sample. The raw hyperspectral blood images are then captured under the same conditions. 
Finally, the calibration coefficient is calculated from the white reference image by Eq. (1) and 
the calibrated blood image is retrieved by the calibration coefficient: 

 , ,
, , , , , ,
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where Kn is the calibration coefficient of each band n; , .
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k p nD  and , ,

calibtration
k p nD  represent the 

data of blood smears before and after calibration, respectively. , ,
white
k p nD  represents the intensity 

of pixel (k, p) in the nth single band image of the white reference image. N is the total band 
number of the spectral blood images, and Lx and Ly denote the line and sample number, 
respectively. 

2.3 Spectral analysis: normalization and encoding 

The purpose of the spectral analysis is to explore methods for representation and storage of 
the extracted informative spectral features for further identification. As described in Fig. 1, 
every pixel in the hyperspectral blood image contains an N-dimensional spectrum vector, 
representing the spectrum features of the material in this pixel. The spectrum is so large, 
however, that at least 12 bits are needed to store one pixel. The computational cost of 
comparison among various spectra is very high. For the sake of computational simplicity, we 
normalized values measured on different scales to a notionally common 0-1 scale for spectral 
analysis. Lymphocytes, lymphoblasts, and red blood cells (RBCs) are all blood cells, so their 
common molecular elements give their spectra similar distributions; this means their features 
remained distinct after normalization without loss of any important information. 

Encoding was applied to further reduce the computational burden in terms of storage. The 
natural binary-coded decimal  (NBCD) is a class of binary encodings of decimal numbers 
where each 0 to 9 decimal digit is represented by four bits. It allows for the accurate 
representation and rounding of decimal quantities as well as simple binary operation rules. 
After normalization and encoding, the value of each pixel per band was reduced from 12 bits 
to four. 

2.4 Spatial analysis: feature selection 

In traditional lymphocyte and lymphoblast identification methods, dozens or even hundreds 
of features must be considered to ensure sufficient identification accuracy [22]. Both spectral 
and spatial features can be extracted from a hyperspectral blood image, so the dimensions of 
the spatial features can be reduced substantially. The goal of spatial analysis is to select the 
most characteristic spatial features integrated with the spectral features to facilitate accurate 
blood cell identification. 

S. Mohapatra made a detailed description of 44 shape, color, and texture features for 
lymphocyte and lymphoblast detection [20], 30 of which were incorporated into the 
identification process. We would assert that 30 spatial features still contains redundancies; 
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and are not all suitable for hyperspectral images as some of them are based on the RGB 
images. Moreover, from a hematologist’s perspective, compound features are more useful 
than the single features in lymphoblast identification – the nucleus/cytoplasm ratio is superior 
to nucleus area and cytoplasm area, for example, because the single feature is less stable and 
less robust. 

In this study, we built a recursive feature elimination (RFE) algorithm as a greedy 
optimization for identifying the best-performing subset of features [27]. The RFE was 
designed to repeatedly construct a selection model and choose either the best- or worst-
performing feature, set the feature aside, then repeat the process with the remaining features. 
The most popular version of this algorithm uses a support vector machine (SVM-RFE) as 
selection model to eliminate features. SVM is embedded to determine the weights of features 
in the training stage, whereas for this nonlinear feature selection problem, the radial basis 
function (RBF) kernel trains and tests low-degree polynomial data mappings via linear SVM 
[28]. Cross validation serves as the evaluation function to rank features in each iteration. A 
total of five spatial features were selected by SVM-RFE algorithm in this study: mean, 
variance, nucleus perimeter, nucleus/cytoplasm ratio, and entropy. These features fell into 
three intrinsically different measures: descriptive statistics measures, contrast measures, and 
orderliness measures. As for spatial feature extraction, the principal component analysis 
(PCA) method is firstly used to map blood images onto a vector space to reduce the 
dimension so as to remain the most spatial information. After the PCA transform, a single 
band map containing spatial information is generated. Meanwhile, the marker-competitive 
layer of the proposed method outputs a marker map containing the segmented lymphoblast or 
lymphocyte. Then, Otus [3] algorithm combines these two map to segment the cells into 
nucleus and cytoplasm. Finally, five spatial features could be calculated from these results. 

2.5 Marker-based neural network classification 

Artificial neural networks (ANNs) are commonly used in image classification with various 
structures including back-propagation, Hopfield, radial-basis function, and adaptive 
resonance theory. In view of the large scale of hyperspectral blood images, the learning vector 
quantization (LVQ) classifier performs better with fewer parameters and a simpler structure. 
It also combines the advantages of supervised learning and competitive learning systems, 
ensuring fast convergence and high fault-tolerance. Nevertheless, when typical LVQ is 
applied to spectral-spatial based blood cell identification, its accuracy may be restricted 
because it works under the assumption that spectral and spatial information have independent 
contributions to the classification results. This assumption makes the compounded spectral 
and spatial classifier a simple linear superposition, which may lead to inadequate learning and 
low accuracy. It is necessary to modify the formulation of the original LVQ to explore the 
inner connection between spectral and spatial information in hyperspectral blood images. 
However, existing techniques for doing so mainly focus on faster convergence, input 
dimension scaling, and decision mechanism adaption [29]. A marker-based LVQ (MLVQ) 
neural network is proposed in this study which defines a marker regulation for the 
determination of competitive layers to make full use of the spectral and spatial information. 

The topological structure of MLVQ includes three layers: an input layer, a marker-
competitive layer, and an output layer. The number of input neurons equals the number of 
input spectral and spatial features. The input layer is fully connected to the marker-
competitive layer by the alterable weights, whereas the marker-competitive and output layers 
are not completely linked by the fixed weights. The number of the output layers equals the 
desired blood cell types. The MLVQ classifier determines the number of neurons in the 
marker-competitive layer based on the number of selected markers. The MLVQ learning 
process has three parts: connection establishment, marker-competitive neuron determination, 
and weight updating. 
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Connection establishment 

In the proposed technique, an unsupervised clustering algorithm self organizing map (SOM) 
is used to form a preliminary clustering map to analyze the characteristics of input spectral 
and spatial features among different blood cells. The SOM uses a “winner-take-all” strategy 
to integrate inputs into the robust cluster [30]; the “winner” is the input with minimum 
distance from the input vector. In the MLVQ classifier, the winner is assigned to the maximal 
weight. The weight is updated in each iteration through the competitive learning rule (i.e., 
weight updating). This process establishes the connection between the input layer and the 
marker-competitive layer for the subsequent marker selection. For an N-dimensional input 
vector X = [X1, X2, …, Xn], the winner neuron Cm in the marker-comparative layer is 
determined by Eq. (2): 

 ( )2
min ( 1, 2,... )m k kX C X W k M− = − =  (2) 

where Wk is the alterable weight between the input vector X and the kth neuron in the marker-
competitive layer. M is the class number of clusters created by the SOM, and the Euclidean 
distance is used for similarity calculation. 

Marker-competitive neuron determination 

The clustering map is generated by the compound features after the spectral and spatial 
information are input for unsupervised clustering. If cluster contains a large set of spatially 
connected pixels, the cluster is integrated with strongly reliable and relevant information and 
must contain a marker. Conversely, a cluster containing a small number of pixels is assumed 
to have weaker information and exclude the marker. In the MLVQ algorithm, the total 
clusters are first separated by kth classes in Eq. (3). The marker is then selected by 
performing morphological erosion of each cluster via a preset structuring element (SE), where 
SE is defined as an elementary 3 × 3 square [[0,1,0], [1,1,1], [0,1,0]] by Eq. (4): 

 ( ) ( )1 0
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where ( )
j

k
Ch  refers to the kth class map containing the jth cluster and L is the total number of 

clusters. M (k) is the selected marker of the kth class map. After the erosion process, the 
small-scale cluster is eliminated with no marker selected whereas the marker is chosen from 
the remaining cluster. The non-marker cluster is merged to the adjacent cluster, as the 
characteristic information is insignificant in the final classification. The number of marker-
competitive neurons is determined once the merging converges on a fixed number. 

Weight updating 

As the MLVQ algorithm is a supervised classifier, the alterable weight kW  is updated 

iteratively by supervised learning rules. If the output class differs from the training data, the 
weight kW  is weakened by the rule described in Eq. (5), otherwise the weight kW  is 

strengthened by Eq. (6): 

 ( ) ( ) ( ) ( )1k k kW t W t t X W tμ+ = − −    (5) 

 ( ) ( ) ( ) ( )1k k kW t W t t X W tμ+ = + −    (6) 
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where t is the iteration time and μ(t) is the learning rate. 

3. Experiments and results 

3.1 Data acquisition and preprocessing 

Clinically, ALL is pre-diagnosed on the presence or absence of lymphoblasts in PBS samples. 
Lymphoblasts should be distinguished from lymphocytes as accurately as possible in blood 
samples to provide a credible diagnostic basis for hematologists. For the purposes of this 
study, peripheral blood was collected from ALL patients and healthy samples; patients 
included children, adolescents, and adults between 7 and 65 years of age having been 
clinically examined at the Department of Hematology, Ruijin Hospital, Shanghai, China. A 
total of 16 patients who were advised to undergo peripheral blood and/or bone marrow 
examinations were clinically diagnosed with ALL. As a control, a total of 24 samples (16 out 
of 27 ALL patients and 8 normal samples without clinical history of leukemia) for the study 
were also obtained from patients undergoing routine differential blood counts. PBS were 
prepared from these samples accordingly. 

Anticoagulant was first supplied to the samples to keep them from congealing, then a drop 
of blood approximately 2 mm in diameter was used for each PBS preparation. The standard 
for a good PBS is that the blood spreads evenly with no breakage or overlapping. The PBS 
was dyed with Giemsa (10% Giemsa-stain and 90% phosphate buffer saline) from Baso 
Diagnostics, Inc. Zhuhai, and dyed in a Sysmex sp-10 machine provided by the Department 
of Hematology, Ruijin Hospital, Shanghai, China. When the prepared PBS was settled on the 
stage, the homemade MHSI system was used for hyperspectral blood image acquisition. One 
hundred and thirty-five stained lymphoblast images from 27 patients diagnosed with ALL and 
120 stained lymphocyte images from 24 control subjects were obtained by the hyperspectral 
imaging system. The captured image data contained 70 bands with 1280 × 1024 pixels × 12 
bit/pixel per band stored in BSQ format. The data was calibrated by the calibration coefficient 
presented in Section 2. 

The typical spectra of average transmittance extracted from ROIs of lymphoblasts, 
lymphocytes, and RBCs are shown in Fig. 2(a) in the wavelength range of 550-1000 nm. 
Spectral signatures are obvious among different cell types in these spectra. Figure 2(b) shows 
the BCD coding of three blood cells’ spectra where the most informative characteristics were 
retained and stored in only 4 bit/pixels per band instead of 12 bits. Because the hyperspectral 
image contains the reflectance spectrum for each kind of material, 15 spectra were extracted 
from 135 lymphoblast cells as shown in Fig. 2(c); different cells from the same kind of 
lymphoblast showed the same spectral distribution. Similarly, 15 spectra from 120 
lymphocyte cells and RBCs are shown in Fig. 2(d) and 2(e). Figure 2 altogether indicates that 
in the collected spectra, different types of cells have different spectral signatures and that the 
same type of cells have similar spectral distribution. 
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Fig. 2. (a) Mean spectra of lymphoblast, lymphocyte, and RBC with normalization; (b) mean 
spectra of lymphoblast, lymphocyte, and RBC after BCD coding; (c) collected lymphoblast 
spectra; (d) collected lymphocyte spectra; (e) collected RBC spectra. 

3.2 Identification results based on different data sets 

After the preprocessing of hyperspectral blood images, spectral and spatial features were 
extracted accordingly and applied for the proposed MLVQ identification measure. Several 
tests were conducted based on the confusion matrix shown in Table 1 to evaluate the 
performance of different feature sets. We compared the identification results with criterion 
provided by a hematologist. Generally, true positive (TP) and true negative (TN) indicate 
correct identification of a lymphoblast and lymphocyte; false positive (FP) indicates that the 
lymphocyte was identified as a lymphoblast and false negative (FN) that the lymphoblast was 
identified as a lymphocyte. Accuracy, specificity, and sensitivity performance measures were 
calculated as follows: 

 ( )
( )

TP TN
Accuary

TP TN FP FN
+= + + +  (7) 

 ( )
TNSpecificity

TN FP
= +  (8) 

 ( )
TPSensitivity

TP FN
= +  (9) 

where accuracy is defined as the ratio of the number of cells that are identified correctly to the 
total number of cells irrespective of the cell type. Sensitivity and specificity describe the 
proportion of correctly identified lymphoblasts and lymphocytes, respectively. Theoretically, 
the two measures’ sensitivity and specificity seem equally important. In practice, however, 
hematologists tend to be more concerned with sensitivity in the identification of ALL. In the 
scene of a healthy human’s peripheral blood smear, the number of lymphoblasts is no more 
than one or two, so even a slight increase may be serious. If an identification method has low 
sensitivity (i.e., some lymphoblasts are not identified instantly,) it is possible that ALL will 
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expand rapidly into the blood stream and vital organs if left untreated. Therefore, sensitivity 
in the identification method is of crucial importance for the early diagnosis of ALL. 

We first input the hyperspectral data with BCD encoded spectral wavelength (70 bands) 
for identification. The generated accuracy, sensitivity, and specificity were 87.1%, 88.9%, 
and 85%, respectively (Table 2). The reasonable accuracy suggests a strong correlation 
between the blood cell spectra and lymphocyte identification. In other words, the proposed 
technique seems promising for the pre-diagnosis of ALL via MHSI. 

We ran a second experiment was based on the five spatial features selected by SVM-RFE 
algorithm for the sake of comparison against traditional identification methods which 
consider image features. Table 2 shows that the performance was inferior to that of the 
spectral bands. There was lower accuracy (82.4%) and lower sensitivity (82.2%) but 
markedly higher specificity (85%), suggesting that spatial features contain important 
information for lymphocyte identification. 

Both the spectral and spatial features performed well, so we ran a third experiment based 
on a combination thereof which we expected to produce optimal identification results. The 
original hyperspectral blood cell images were processed by calibration and normalization to 
generate spectral features and by SVM-RFE algorithm to select spatial features. The BCD 
coded spectral features and five spatial features comprised the input layer of the MLVQ 
network. After a 100-fold iterative training, the optimal performance was obtained as 
recorded in Table 2, with the accuracy, sensitivity, and specificity of 92.9%, 93.3%, and 
92.5%, respectively. These results indicated that combined spectral and spatial features 
convey highly useful information for lymphoblast and lymphocyte identification. 

Table 1. Confusion matrix for identification performance evaluation 

Identification Criterion provided by hematologists 

Output Lymphoblast Lymphocyte 

Lymphoblast TP FP 

Lymphocyte FN TN 

Table 2. Performance of lymphoblast and lymphocyte identification with different data 
set input 

Feature input Accuracy (%) Sensitivity (%) Specificity (%) 

Spectral feature 87.1 88.9 85 

Spatial feature  82.4 82.2 85 

Spectral-spatial feature 92.9 93.3 92.5 

3.3 Visualization of ALL pre-diagnosis 

Per the evaluation results of various data sets discussed above, integrating optimal spectral 
signatures with selected spatial signatures as the input layer of the MLVQ network yields 
optimal identification accuracy. The MHSI system can be used to visualize the lymphoblast 
and lymphocyte identification results (Fig. 3) to assist hematologists in pre-diagnosing ALL 
reliably. Hematologists tend to be well-accustomed to light microscopy images through 
experience, so we ensured that light microscopy hyperspectral images with a 100 × 
immersion oil objective lens were captured by the MHSI system; these images can be easily 
and intuitively reviewed by hematologists. 

Traditional identification results generated by applying an unsupervised K-means method 
to traditional light microscopy images were also obtained for comparison. Specifically, before 
the process of K-means, we set two targets and then it uses Euclidean distance to cluster the 
similar pixels and classify them into two classes. In Figs. 3(a) and 3(c), there is one 
lymphocyte in the upper and one lymphoblast in the center of the image. An identification 
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map was generated where the lymphocyte is colored in green and the lymphoblast in red. As a 
control, Figs. 3(e) and 3(g) contain one lymphoblast and the corresponding mapping is 
marked in red (Fig. 3(h)). Figures 3(m) and 3(o) contain one lymphocyte and the 
corresponding mapping is marked in green (Fig. 3(p)). 

Traditional light images do not allow the viewer to readily distinguish lymphocytes from 
lymphoblasts, and even allow some red blood cells to be misidentified (Figs. 3(b), 3(f)). The 
traditional method requires that several parameters be calculated to identify different types of 
blood cells; these tend to yield poor identification results, as the spatial features provided by 
traditional light images are not sufficient for discrimination between lymphoblasts and 
lymphocytes. The proposed method, as described above, inputs a combination of spectral and 
spatial features into the neural network system for training. This combination yields more 
accurate results compared to the traditional separation of all types of blood cells. 

 

Fig. 3. (a) (e) (i) (m) Light microscope images, (b) (f) (j) (n) microscope image identification 
results by K-means, (c) (g) (k) (o) single band images selected from hyperspectral image, (d) 
(h) (l) (p) identification results by proposed method. 

4. Conclusion 

Early diagnosis of ALL is of vital importance for timely treatment and recovery. Microscopy 
examination of PBS is one of the most commonly used pre-diagnostic procedures involving 
discrimination between lymphoblasts and lymphocytes. Morphological information is most 
important standard for lymphoblast identification. Existing automatic identification methods 
based on blood images captured by traditional light microscopes typically take spatial features 
as inputs, but inhomogeneous staining and non-uniform sample thickness tend to yield poor 
identification results. This paper proposes an MHSI system for lymphoblast and lymphocyte 
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identification based on a combination of spectral and spatial information. In the proposed 
setup, spatial features are first determined by support vector machine-recursive feature 
elimination (SVM-RFE) algorithm. A marker-based LVQ (MLVQ) neural network is then 
used to define a marker regulation to determine the competitive layer making full use of both 
spectral and spatial information. The encoded spectral features and five spatial features 
comprise the input layer. Experimental results showed that the combined spectral and spatial 
features yield optimal performance with accuracy, sensitivity, and specificity up to 92.9%, 
93.3%, and 92.5%, respectively. Although the performance of the proposed system is 
reasonable, we concentrated only on the per-cell identification of lymphoblasts in this study; 
this relates solely to the feasibility of hyperspectral imaging on this one issue. In the future, 
we plan to explore the system’s accuracy on a per-patient basis to provide more reliable 
evidence for ALL pre-diagnosis. This will also allow us to conduct a comparison with 
molecular biology-based methods, and to investigate the diagnostic and clinical efficacy of 
hyperspectral imaging technology. It is also worth noting that because our samples were 
Giemsa-stained blood smears, additional control samples are needed for comparison. 
Hyperspectral imaging technology may be applicable for capturing unstained cells or tissues 
and identifying them according to their specific spectral features. In the future, we plan to 
explore new methods to identify unstained leukocytes. Moreover, ALL has three subtypes, 
L1, L2, and L3, which may be classifiable according to lymphoblast type. We also plan to 
attempt classification of lymphoblasts into these three subtypes via nucleus and cytoplasm 
segmentation to provide even more accurate diagnosis information. 
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